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Abstract

The focus of this invited keynote paper �to be pre�
sented by H� J� Siegel� is mixed�machine heteroge�
neous computing� where a suite of di�erent kinds
of high�performance machines are interconnected by
high�speed links� Such a system can be orchestrated
to perform an application whose subtasks have diverse
execution requirements� Subtasks are assigned to and
executed on the machines that will result in a minimal
overall execution time for the task� considering factors
including inter�machine communication overhead� A
conceptual model of the automatic decomposition of
tasks and assignment of subtasks is presented� Exam�
ples of static and dynamic approaches to the match�
ing and scheduling of subtasks are summarized� Some
open research problems are discussed�

� Introduction
Existing high�performance computers typically

achieve only a fraction of their peak capabilities on
certain portions of some application tasks ���� This is
because di�erent subtasks of an application can have
very di�erent computational requirements that result
in the need for di�erent machine capabilities� A sin�
gle machine architecture cannot satisfy all the compu�
tational requirements of certain applications equally
well� Thus� the use of a heterogeneous computing en�
vironment is more appropriate�

The focus of this invited keynote paper �to
be presented by H� J� Siegel� is mixed�machine
heterogeneous computing �HC�� where a suite of dif�
ferent kinds of high�performance machines are inter�
connected by high�speed links� Such a system pro�
vides a variety of architectural capabilities� orches�
trated to perform an application whose subtasks have
diverse execution requirements �	
�� The task must
be decomposed into subtasks� where each subtask
is computationally homogeneous� and di�erent sub�
tasks may have di�erent machine architectural re�
quirements� These subtasks may share initial or gen�
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erated data� creating the potential for inter�machine
data transfer overhead� To exploit HC systems in such
situations� each subtask must be assigned to and ex�
ecuted on the machines that will result in a minimal
overall execution time for the task� considering fac�
tors including inter�machine communication overhead�
The subtasks can be assigned either prior to execution
�statically� or during the execution �dynamically��

Figure 	 shows a hypothetical example of an appli�
cation program whose various subtasks are best suited
for execution on di�erent machine architectures ����
Executing the whole program on a SIMD machine
only gives approximately �ve times the performance
achieved by a baseline serial machine� Only the SIMD
portion of the program can be executed signi�cantly
faster because of the mismatch between each subtask�s
unique computational requirement and the SIMD ar�
chitecture� Alternatively� the use of four di�erent ma�
chines� each matched to the computational require�
ments of the subtask to which it was assigned� can
result in an execution � times as fast as the baseline
serial machine�

A conceptual model for automatic HC is introduced
in Section �� As an example of current research in
static matching and scheduling� Section � presents a
genetic�algorithm�based approach� Section � describes
a dynamic mapping algorithm for on�line matching
and scheduling� Open problems are discussed in Sec�
tion �

� A Conceptual Model for HC

Typically� users of HC systems must perform task
decomposition and subtask matching and scheduling
themselves �e�g���	�� 	� ����� A conceptual model for
automatic task decomposition� matching subtasks to
machines� and scheduling subtasks is shown in Figure
�� It builds on the model presented in �	�� and is re�
ferred to as a �conceptual� model because no complete
automatic implementation currently exists�

In stage 	� using information about the expected
types of application tasks and about the machines in
the HC suite� a set of parameters is generated that
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Figure 	� Hypothetical example of the advantage of using a heterogeneous suite of machines� where the hetero�
geneous suite time includes intermachine communication overhead �based on ����� Not drawn to scale�

is relevant to both the computational requirements of
the applications and the machine capabilities of the
HC system� For each parameter� categories for com�
putational characteristics and categories for machine
architecture features are derived�

In stage �� task pro�ling decomposes the applica�
tion task into subtasks� each of which is computation�
ally homogeneous� The computational requirements
for each subtask are then quanti�ed by pro�ling the
code and data� Analytical benchmarking is used to
quantify how e�ectively each of the available machines
in the suite performs on each of the types of compu�
tations being considered�

One of the functions of stage � is to be able to use
the information from stage � to derive the estimated
execution time of each subtask on each machine in the
HC suite and the associated inter�machine communi�
cation overhead� Then� these static results� with the
machine and inter�machine network initial loading and
�status� �i�e�� machine�network faults and expected
subtask�transfer completion times� are used to gener�
ate an assignment of the subtasks to machines and an
execution schedule based on certain cost metrics �e�g��
minimizing the overall task execution time��

Stage � is the execution of the given application� In
dynamic matching and scheduling systems� the sub�
task completion times and loading�status of the ma�
chines�network are monitored� This information may
be used to reinvoke the matching and scheduling of
stage � to improve the machine assignment and exe�
cution schedule�

Automatic HC is relatively new �eld� Frame�
works for task pro�ling� analytical benchmarking� and
mapping �matching and scheduling� have been pro�
posed� however� further research is needed to make

this conceptual model a reality �	
� 	���

� Static Task Mapping
In general� the problem of performingmatching and

scheduling in an HC environment is NP�complete ���
and therefore some heuristic must be employed� A
variety of static approaches have been studied for dif�
ferent HC models �e�g�� ��� 		� 	�� 	���� As an exam�
ple of current HC research on mapping statically� a
genetic�algorithm approach from ��	� is summarized�
An application task is decomposed into a set of sub�
tasks S� Let si be the i�th subtask� An HC suite
consists of a set of machines M � Let mj be the j�
th machine� Each machine can be a di�erent type�
The global data items are data items that need to be
transferred between subtasks�

The following assumptions about the applications
and HC environment are made� Each application task
will be represented by a DAG �directed acyclic graph��
whose nodes are the subtasks that need to be executed
to perform the application and whose arcs are the data
dependencies between subtasks� �Note that while the
subtasks� dependencies are represented as a DAG� sub�
tasks themselves may contain loops�� Each edge is la�
beled by the global data item that is transferred over
it� The application task has exclusive use of the HC
environment� and the genetic�algorithm�based mapper
controls the HC machine suite �hardware platform��
Subtask execution is non�preemptive� The estimated
expected execution time of each subtask on each ma�
chine is known� For each pair of machines in the HC
suite� an equation for estimating the time to send data
between those machines as a function of data set size
is known�

Genetic algorithms �GAs� are a heuristic approach
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Figure �� Model for integrating the software support needed for automating the use of heterogeneous computing
systems �based on �	����

to optimization problems that are intractable� The
�rst step is to encode some of the possible solutions
as chromosomes� the set of which is referred to as a
population� In the ��	� approach� each chromosome
consists of two parts� the matching string �mat� and
the scheduling string �ss�� If mat�i� � j� then sub�
task si is assigned to machine mj � Typically� mul�
tiple subtasks will be assigned to the same machine�
and then executed in a non�preemptive manner based
on an ordering that obeys the precedence constraints
�data dependencies� speci�ed in the task DAG� The
scheduling string is a topological sort of the DAG rep�
resenting the task �i�e�� a valid total ordering of the
partially ordered DAG�� If ss�k� � i� then subtask si
is the k�th subtask in the total ordering� Because it
is a topological sort� if subtask ss�k� needs a global
data item created by subtask ss�j�� then j � k� The
scheduling string gives an ordering of subtasks that is
used by the evaluation step�

Each chromosome is associated with a �tness value�
which is the completion time of the solution �i�e�� map�
ping� represented by this chromosome �i�e�� the ex�

pected execution time of the application task if the
mapping speci�ed by this chromosome were used��
Overlapping among all of the computations and com�
munications performed is limited only by inter�subtask
data dependencies and the availability of the machines
and the inter�machine network�

In the initial population generation step� a prede�
�ned number of distinct chromosomes are randomly
created� The solution from a non�evolutionary heuris�
tic is also included in the initial population� After
the initial population is determined� the genetic algo�
rithm iterates until a prede�ned stopping criterion is
met� Each iteration consists of the selection� crossover�
mutation� and evaluation steps�

In the selection step� some members of the popu�
lation are removed and others are duplicated� First�
all of the chromosomes in the population are ordered
�ranked� by their �tness values� Then a rank�based
roulette wheel selection scheme is used to implement
proportionate selection� The population size is kept
constant and a chromosome representing a better so�
lution has a higher probability of having one or more
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copies in the next generation population� This GA ap�
proach also incorporates elitism� i�e�� the best solution
found so far is always kept in the population�

The selection step is followed by the crossover step�
where some chromosomes are paired and correspond�
ing components of the paired chromosomes are ex�
changed� The crossover operator for the scheduling
strings randomly chooses some pairs of the schedul�
ing strings in the current population� For each pair�
it randomly generates a cuto� point� and divides the
scheduling strings of the pair into top and bottom
parts� Then� the subtasks in each bottom part are re�
ordered using the relative positions of these subtasks
in the other original scheduling string� thus guaran�
teeing that the newly generated scheduling strings are
valid schedules� The crossover operator for the match�
ing strings randomly chooses some pairs of the match�
ing strings in the current population� For each pair� it
randomly generates a cuto� point� and divides both
matching strings of the pair into two parts� Then
the machine assignments of the bottom parts are ex�
changed�

The next step is mutation� The scheduling string
mutation operator randomly chooses some scheduling
strings in the current population� Then for each cho�
sen scheduling string� it randomly selects a victim sub�
task� The valid range of the victim subtask is the set
of the positions in the scheduling string at which this
victim subtask can be placed and still have a valid
topological sort of the DAG� The victim subtask is
moved randomly to another position in the schedul�
ing string within its valid range� The matching string
mutation operator randomly chooses some matching
strings in the current population� For each chosen
matching string� it randomly selects a subtask entry�
Then the machine assignment for the selected entry is
changed randomly to another machine�

The last step of an evolution iteration is the
evaluation step to determine the �tness value of each
chromosome in the current population� A communi�
cation subsystem that is modeled after a HiPPI LAN
with a central crossbar switch was assumed for the
tests that were conducted� As stated earlier� the above
steps of selection� crossover� mutation� and evaluation
are repeated until one of the stopping criteria are met�
�	� the number of iterations reaches some limit �e�g��
	����� ��� the population converged �all the chromo�
somes had the same �tness value�� or ��� the best so�
lution found was not improved after some number of
iterations �e�g�� 	���

In the tests of this GA approach in ��	�� simu�
lated program behaviors were used� Small�scale tests

were conducted with up to ten subtasks� three ma�
chines� and population size �� For each test� the GA
approach found a solution �mapping� that had the
same expected completion time for the task as that
of the optimal solution found by exhaustive search�
Larger tests with up to 	�� subtasks� �� machines�
and population size ��� were conducted� This GA ap�
proach produced solutions �mappings� that averaged
from 	�� to ���� better than those produced by the
non�evolutionary levelized min�time �LMT� heuristic
proposed in �	��� The heuristic in �	�� was selected
for comparison because it used a similar model of HC�
The GA approach took much more time to generate
the mappings than did the LMT approach� however�
if the mappings are being created o��line� prior to run
time� for production tasks that will be executed re�
peatedly� the generation time is worthwhile�

� Dynamic Task Mapping
The static mapping algorithms assume that accu�

rate estimates are available for parameters such as
subtask completion times� However� in general� such
estimates have a degree of uncertainty in them� There�
fore� dynamic mapping algorithms that can handle the
uncertainty may be needed� Researchers have pro�
posed di�erent dynamic algorithms for varying HC
models �e�g�� ��� �� �� 	���� In dynamic mapping al�
gorithms� machines can come on�line and go o��line
at run time�

As an example of current Purdue research on
dynamic mapping� an algorithm called the hybrid
mapper is discussed in this section� The hybrid map�
per uses some results based on an initial static map�
ping in conjunction with information available only at
execution time� It is based on the list scheduling class
of algorithms �	��� An initial� statically obtained map�
ping is provided as input to the hybrid mapper� If the
initial mapping is not provided� it should be obtained
before running the hybrid mapper�

An HC model similar to the one described in Sec�
tion � is assumed here� Two indices� i and k are as�
sociated with each subtask si�k� The index i denotes
that si�k is the i�th subtask in the set S and k is the
block number assigned to it by the partitioning algo�
rithm described below� The estimated expected com�
putation time of subtask si�k on machine mj is given
by ei�k�j� The earliest time at which machine mj is

available is given by A�j��
The hybrid mapper executes in two phases� This

�rst phase uses the initial static mapping� expected
subtask computation times� and expected data trans�
fer times to preprocess the DAG that represents the
application o� line� Initially� the DAG is partitioned
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intoB blocks� numbered consecutively from � to B�	�
The partitioning is done such that the subtasks within
a block are independent� i�e�� there are no data depen�
dencies among the subtasks in a block� Furthermore�
for each block k subtask� sj�k� there exists at least one
incident edge �data dependency� such that the source
subtask is in block k � 	� i�e�� an incident edge from
some si�k��� The �B � 	��th block includes the sub�
tasks without any successors and the ��th block in�
cludes only those subtasks without any predecessors�

Once the subtasks in the DAG are partitioned� each
subtask is assigned a level by examining the subtasks
from block B�	 to block �� The level of each subtask
in the �B � 	��th block is set to its expected compu�
tation time on the machine to which it was assigned
by the initial matching� Now consider the k�th block�
� � k � B � 	� Recall ei�k�x is the expected compu�
tation time of the subtask si�k on machine mx� Let
ci�j be the data transfer time for a descendent sj�q of

si�k to get all the relevant data items from si�k �where
q � k � 	�� The value of ci�j will be dependent on
the machines assigned to subtasks si�k and sj�q by the
initial mapping� Let level�si�k� be the level of the sub�

task si�k� Let iss�si�k� be the immediate successor set
of subtask si�k such that there is an arc from si�k to
each member of iss�si�k� in the DAG� With these def�
initions� the level of a subtask si�k that is initially as�
signed to mx is given by�

level�si�k� � ei�k�x� max
sj�q � iss�si�k�

�ci�j�level�sj�q���

The level of a subtask can be interpreted as the
length of the critical path from the point the given
subtask is located on the DAG to a subtask with no
successors� The hybrid mapper is based on the heuris�
tic idea that by executing the subtasks with higher
levels as quickly as possible� the overall expected com�
pletion time for the application can be minimized�

The second phase of the hybrid mapper involves
the actual execution of the subtasks� The execution
of the subtasks proceeds from block � to block B � 	�
A block k is considered to be executing if at least one
subtask from block k is executing� The execution of
several blocks can overlap with each other in time�
i�e�� subtasks from di�erent blocks could be executing
at the same time�

The hybrid mapper starts remapping the block k

subtasks when the �rst block �k � 	� subtask begins
its execution� When block k is being scheduled� it
is highly likely that actual execution time informa�
tion can be used for many subtasks from blocks � to
k � �� There may be some subtasks from blocks � to

k � � that could still be executing or awaiting execu�
tion when subtasks from block k are being considered
for remapping� For such subtasks� expected execution
times are used�

In a list�scheduling type of algorithm� the subtasks
are �rst ordered based on some priority� Then� each
subtask is mapped by examining the list of subtasks
from the highest priority subtask to the lowest prior�
ity subtask� The machine to which each subtask is
assigned depends on the matching criterion used by
the particular algorithm� In the hybrid mapper� the
priority of a subtask is equal to the level of that sub�
task that was computed statically in the �rst phase�
The matching criterion used for subtask si�k is the
minimization of the partial completion time� de�ned
below�

Let mx be the machine on which si�k is being con�
sidered for execution� Then let pct�si�j � x� denote the
partial completion time of the subtask si�k on machine
mx� dr�si�k� be the time at which the last data item re�
quired by si�k to begin its execution arrives at mx� and
ips�si�k� be the immediate predecessor set for subtask
si�k such that there is an arc to si�k from each member
of ips�si�k� in the DAG� For any subtask si�k� where
sj�q � ips�si�k�� and sj�q is currently mapped onto ma�
chine my�

dr�si�k� � max
sj�q � ips�si�k�

�cj�i � pct�sj�q � y���

pct�si�k� x� � ei�k�x �max�A�x�� dr�si�k���

The subtask si�k is remapped onto the machine mx

that gives the minimum pct�si�k� x�� and A�x� is up�
dated using pct�si�k�� Then the next subtask from the
list is considered for mapping�

The simulation results indicate that the perfor�
mance of a statically obtained initial mapping can
be improved by the hybrid mapper� Initial mappings
were generated using the baseline algorithm ��	�� The
baseline algorithm partitions the subtasks into blocks
using an algorithm similar to the one described here�
Once the subtasks are partitioned into blocks� they are
ordered such that a subtask in block k comes before a
subtask in block l� where k � l� The subtasks within
a block are arranged such that the subtasks with more
descendents appear before the subtasks with less de�
scendents �ties are broken arbitrarily�� The subtasks
are considered for assignment by traversing the list�
beginning with block � subtasks� A subtask is mapped
to the machine that gives the shortest partial com�
pletion time for the subtasks that have been mapped
�including this subtask��

From the simulation results obtained� performance





improvement from using the hybrid mapper can be
as much as 	� for some cases� The timings also in�
dicate that the remapping time needed per block of
subtasks is in the order hundreds of milliseconds for
up to � machines and �� subtasks� In the worst case
situation� to obtain complete overlap between the ex�
ecution of the subtasks and the operation of the hy�
brid mapper� the computation time for the shortest
running subtask must be greater than the per block
remapping time� Ongoing research will examine ways
to increase the performance gain obtained from the
use of the hybrid remapper�

� Open Research Problems
There are a great many open problems that need

to be solved before HC can be made available to ap�
plication programmers in a transparent way �summa�
rized here from �	�� 	
� 	���� Implementation of the
automatic HC programming environment envisioned
in the conceptual model in Section � will require a
great deal of research for devising practical and theo�
retically sound methodologies for each component of
every stage� A general question that is particularly
applicable to stages 	 and � of the conceptual model
is� �What information should �must� the user provide
and what information should �can� be determined au�
tomatically��

To program an HC system� it would be best to have
one or more machine�independent programming lan�
guages ���� that allow the user to augment the code
with compiler directives� The language and directives
should be designed to facilitate �a� the compilation of
the program into e�cient code for the machines in the
suite� �b� the task decomposition� �c� the determina�
tion of computational requirements of each subtask�
and �d� the use of machine�dependent subroutine li�
braries�

There is a need for debugging and performance
tuning tools that can be used across an HC suite of
machines� This involves research in the areas of dis�
tributed programming environments and visualization
techniques�

Ideally� information about the current loading and
status of the machines in the HC suite and the net�
work should be incorporated into the mapping deci�
sions� Methods must be developed for measuring the
current loading� determining the status �e�g�� faulty
or not�� and estimating the subtask completion times�
Also� the uncertainty present in the estimated param�
eter values such as subtask completion times should be
taken into consideration in determining the machine
assignment and execution schedule�

There is much ongoing research in the area of inter�

machine data transport� This research includes the
hardware support required� the software protocols re�
quired� designing the network topology� computing the
minimum�time path between two machines� and devis�
ing rerouting schemes in case of faults or heavy loads�
Related to this is the data formatting problem� in�
volving issues such as data type storage formats and
sizes� byte ordering within data types� and machines�
network�interface bu�er sizes�

Another area of research is dynamic task migration
between di�erent parallel machines at execution time�
Current research in this area involves determining how
to move an executing task between di�erent machines
�	� �� and how to use dynamic task migration for load
rebalancing or fault tolerance�

Some of the future research outlined here may be
pursued as part of a DARPA�ITO Quorum Program
project called MSHN �Management System for Het�
erogeneous Networks�� MSHN is a collaborative re�
search e�ort amongNPS �Naval Postgraduate School��
NRaD �a Naval Laboratory�� Purdue� and USC �Uni�
versity of Southern California�� It builds on SmartNet�
an operational scheduling framework and system for
managing resources in a heterogeneous environment
developed at NRaD �
�� The technical objective of the
MSHN project is to design� prototype� and re�ne a dis�
tributed resource management system that leverages
the heterogeneity of resources and tasks to deliver the
requested qualities of service�

In summary� while the use of existing HC systems
demonstrates their signi�cant bene�ts� the amount of
e�ort currently required to implement an application
on an HC system can be substantial� Future research
on the above open problems will improve this situation
and allow HC to realize its inherent potential�
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